ANSWERs from Learning Science

ATTENTION: Focused attention is necessary, but not sufficient, for long-term memory
- Intentional learning requires focused attention and clear learning goals
 - Create and share clear learning outcomes
- Attention is limited and decreases over time
 - Take breaks, include activities to reset attention during class
- Multitasking is a myth; task switching yields errors
 - Consider policies to restrict cell phone and laptop use
- Primacy-recency effect
 - Use first and last minutes of class for most important concepts and summaries

NOVELTY: The brain seeks novel stimuli and has built-in curiosity
- Novelty increases motivation and interest; motivation can increase time spent attending and processing
 - Mix up the order and type of activities; include engaging images or videos
- Mystery drives interest, promotes retention and the desire to learn the answer
 - Ask students to predict or guess before giving a demonstration
 - Ask questions before providing answers; use driving questions
 - Avoid giving PowerPoint notes in advance
- Practice should be varied
 - Use a variety of interactive teaching techniques and different types of practice

SPACING: Distributed practice (spacing) yields best long-term retention
- Working memory is limited; long-term memory is unlimited
- Massed practice (cramming) doesn’t work well for long-term memory
 - Encourage spaced practice by giving frequent (weekly) assessments
- Mixed practice (interleaving) has demonstrated benefits
 - Consider making assessments cumulative; encourage students to mix practice
 - Return to prior content, make explicit connections with current content
- Practice makes processes automatic, automaticity frees up working memory
• Spacing gaps should include sleep, which helps memory formation and learning
 o Tell students to review notes just before bed

WHY: Meaning and context help retention
• We understand new things in the context of what we already know
 o Provide concrete, relatable examples to help understand abstract concepts
 o Put knowledge into the larger context/big picture; why it matters
• Help students put knowledge into larger context, connect items, see relevance
 o Use mind maps/concept maps, flow charts
 o Encourage elaboration—expanding on ideas with additional details and explanation
 o Connect to current events or real-life examples to make it relevant
• We solve new problems better when we understand the underlying principles
 o Encourage students to identify or summarize underlying principles
• Chunking: creates pattern, increases functional capacity of working memory
• Rote memorization: mnemonics (acronyms, pegging, loci, visual link, songs)
• Metamemory (teaching students about memory) improves learning

EMOTIONS: Memory formation involves the limbic system, also associated with emotions
• "Affective filter" can impact perception of teacher AND subject matter
 o Share your enthusiasm for the subject matter
 o Get to know your students’ interests and career goals, try to include them
 o Present yourself as a real, approachable person by sharing appropriate, humanizing information
 o Tell relevant stories to make big ideas personal
 o Come to class 5 minutes early and stay 5 minutes late to chat
• Cortisol (stress) is bad for the hippocampus’s optimal functioning
 o Set realistic, clear expectations for assignments and exams to minimize anxiety
• The brain uses up to 25% of the body’s energy: nutrition, hydration, sleep matter
 o Set reasonable deadlines that recognize the need for appropriate sleep

RETRIEVAL: Retrieval practice and appropriate application strengthens long-term memory
• Retrieval practice or practice testing is highly effective
 o Make practice tests available
 o Encourage self-quizzing, flash cards
 o Reward additional practice with extra credit
• What you think about is what you remember—the practice must be appropriate to the eventual assessment
 o Use orienting tasks such as prediction, reflection, questions/prompts to guide study
 o Ask students “what are you thinking about when you study?”
• Learning is effortful; there are no shortcuts
 o Tell students that how they study is important; not just how much
 o Rereading, highlighting are common, ineffective practices
References and Additional Resources

Websites

How to Get the Most Out of Studying (a five part video series)
https://www.youtube.com/watch?v=RH95h36NChI&list=PL85708E6EA236E3DB

Interactive Techniques (list of over 200 activities compiled by ATLE)
http://www.usf.edu/atle/teaching/interactive-techniques.aspx

The Learning Scientists: Six Strategies for Effective Learning (slides and handouts)
http://www.learningscientists.org/downloadable-materials/

Student Study Skills: https://bit.ly/Yee-Study-Skills